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Velocity distribution of inelastic granular gas in a homogeneous cooling state
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The velocity distribution of inelastic granular gas is examined numerically on a two-dimensional hard disk
system in nearly elastic regime using molecular dynamical simulations. The system is prepared initially in the
equilibrium state with the Maxwell-Boltzmann distribution, then after several inelastic collisions per particle,
the system falls in the state that the Boltzmann’s equation predicts with the stationary form of velocity
distribution. It turns out, however, that due to the velocity correlation the form of the distribution function does
not stay time independent, but gradually returns to the Maxwellian immediately after the initial transient till the
clustering instability sets in. It shows that, even in the homogeneous cooling(si@ffestatg, where the
energy decays exponentially as a function of collision number, the velocity correlation in the inelastic system
invalidates the assumption of molecular chaos and the prediction of the Boltzmann’s equation fails.
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Free cooling of granular gas under no gravity has beeriin fact, kinetic theories based on the Boltzmann’s equation
attracting much interest as a subject of statistical mechanicgredicts that there is a stationary scaled solution for the ve-
since people realized that the inelastic collisions betweeltocity distribution that is different from the Gaussian,g],
particles makes the system behave very different from thand after a several collisions per particle, the velocity distri-
elastic system—the subject of the conventional statisticabution for the inelastic system falls into[®,10].
mechanics. In this report, | present results of large scale two-

Besides the cooling, or loosing its kinetic energy due todimensional molecular dynamicéMD) simulations and
the inelasticity, it has been well recognized by now that, ashows that the form of the velocity distribution does not stay
long as the system is large enough, the system shows seristationary in the inelastic gas, but after a short initial tran-
of instabilities, however, small the inelasticity may be. If the sient the distribution gradually getting back to the Gaussian
system is prepared in a highly agitated state, initially it coolgtill the clustering instability sets in. This gradual change
down uniformly as starts at very early stage where the inhomogeneity in the
system is hardly visible.

- The system we examine is the two-dimensional system of
-0 (1)  hard disks that undergoes inelastic collisions with a constant

(1+t/tg)*”’ normal restitutionr. The rotational motion is ignored. i,

andv; denote the velocity of thigh disk before and after the

which is called as the Haff stafé]. After a while, the vortex collis_ion_with thejth particle, respectively, then the collision
structure develops in the velocity fielthe shearing instabil- rule is given by

ity) [2], then the uniformity of the particle density is broken-

(the clustering instability[3]. 1+r

After the clustering instability, the clusters of particles vi':vi—T[”'(vi—vj)]n.
collide with each other, merge, and split in a complex way
[4]; the system eventually develops the high density region,
where the inelastic collapd®,6] is likely to happen if one , r
consider the ideal hard sphere system with a constant resti- vy =Ut T[n'(vi_vi)]n'
tution coefficient.

Regarding the velocity distribution, the Maxwell-
Boltzmann distribution is an equilibrium velocity distribu-
tion for the elastic system, and the relaxation to the distribu . :
tion is known to be very fast, i.e., within a several collisions . The average speegj(t) for d-dimensional system, de-
per particles when the system is spatially uniform. In theflned by
case of the inelastic system, obviously any velocity distribu-
tion cannot be stationary because the system loses kinetic d ) 5
energy at every collision, but it is plausible that the form of Evo(t) :f dvf(v,Hv?, 3)
distribution stays stationary, after a short transient if the ve-
locity is scaled by the average speegg(t):

T

wheren is the unit vector parallel to the relative position of
the colliding particles at the time of contact.

decreases as the system looses energy; with this speed we
scale the velocity distribution through E@). In order to see
f(v.t)= 1 f( v ) ?) the time dependence of the scaled velocity distribufipit
' vo(t)a vo(t) )’ is convenient to expand it using the Sonine polynomial as
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FIG. 1. Energy decay as a function ef for r=0.9 andn 10
=0.25 (¢=0.196). The solid line denotes the result for the system >
with the ordinary inelastic dynamics and the dashed line for the 10 ' ! ' ! ' ! '
system with the velocity shufflésee the text The exponential de- 0 05 1 15 2 25 3 35 4 45

cay (5) with 2y=0.093 is also plotted by the thin solid line with an
extra factor to avoid complete overlapping with the dashed line.

C

FIG. 2. The scaled speed distributions for40 and 80 with

1 £ r=0.9 andn=0.25 (¢=0.196). The plot forr=80 is shifted by

~ _ 2 1 _ . . . . i

f(ct)= ——;e c 2 a,(t)S,(c?), (4) the factor of 10 g T_he Maxwell Bol_tzmann distributions are indi
N =0 cated by the solid lines for comparison.

when the distribution is not very different from the Gaussian;
the €th order Sonine polynomial is th&h order polynomial
orthogonalized with thed-dimensional Gaussian weight
function:

E(7)=E(0)exd —2y7], ®)

where 2y is a decay rate. The thin solid line in Fig. 1 shows

the exponential function with 2=0.093(the line is shifted

1 vertically to avoid complete overlappipgThe initial 7 de-
So(x)=1, Si(X)=-—-x+ Ed’ pendence fits to the exponential decay very well with the
decay rate very close to that obtained in the case of random

collision: 2y,=(1—r?)/d=0.095 forr=0.9. It eventually

1t d+2 +1dd+2
Sz(X)—§X _5( )X 3 ( ), etc.

deviates from the exponential around 70, when the clus-
tering instability sets in.

The speed distribution for this system is plotted in Fig. 2

Due to the normalization and scaling bf we havea,=1

for 7=40 and 80. For both cases, the distribution is very

anda, =0, thus any deviation from the Gaussian distribution¢l0S€ to the Gaussian and the deviation from it is hardly
seen.

is seen in the nonzero values af for {=2.

Simulations were performed by the event-driven metho
using the fast algorithm developed by Isdhé&]. Most of the
simulations were done with the particle numbét
=250000, and the number density- 0.25; we have taken
the disk diameter as the length unit, then the area fragtion
is given by ¢=mn/4=0.196. | employed the periodic
boundary condition and the initial state in the equilibrium
state that is prepared by running the system for long enough 0
with the restitution constamt=1. | focus on the nearly elas-
tic regime where the system stays uniform for a substantial

length of time and the distribution does not deviate very -0.01 r
much from the Gaussian before the clustering instability oc- S
curs.

In the following, the time is measured by the collision —0.02 1
time 7, which is defined as the number of collisions each
particle experiences, i.ez=2N., /N with N, being the 003

total number of collisiongthe factor of 2 comes from the
fact that the collisions are binary
Figure 1 shows the energy decay as a function of time

d The deviation, however, is clearly seenag( ) plotted in

Fig. 3, where the initial deviation from the Gaussian is
shown for various values of restitution constanErom this
figure, it might seem that the scaled distribution becomes
stationary after a several collisions per particle as is expected
from the kinetic theorief9,10]. These “stationary” values of

for r=0.9 andn=0.25 in the semilogarithmic scale. Interms  F|G. 3. The initial time dependence @f, for r =0.99 (top),
of 7, the decay in the Haff state given by Ed) is expressed 0.98, 0.95, and 0.9(bottom) with n=0.25 (¢=0.196). The data
as represent averages over 250 realizations.
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FIG. 4. The minimum values faa, vs the restitution constamt FIG. 6. The scaled Sonine coefficieat/|a; | vs the scaled time

for n=0.25 (¢=0.196). The lines show the estimateafby the  7/7* for r=0.90, 0.95, 0.98, and 0.99 with=0.25 (¢=0.196).

Boltzmann'’s equation in the lowest approximation by R8f.(the ~ The data represent averages over 100 realizations.

dashed lingand in the sixth order approximation by Rgt0] (the

solid line). (The latter is read off numerically from the original When the clustering instability sets in agd is scaled by its

papen The cross at =0.9 indicates the stationary value @f for ~ maximum absolute valugaj| for eachr. The closer the

the velocity shuffling dynamicésee text value ofr is to 1, the smaller the slope in thedependence
becomes, but for all cases, the gradual return to the Gaussian

a, agree very well with the results of the kinetic theory for Starts almost immediately after the initial transient period

the nearly elastic regiom=0.95 in the case oh=0.25 finishes. It starts actually far before any instability becomes

(Fig. 4). ewdept. _ . .

This form of distribution, however, is not really stationary  This behavior obviously contradicts to the results of the
as it may look in the initial stage data of Fig. 3. The Kinetic theories based on the Boltzmann's equafig/i0);
dependence of Sonine coefficients over longer time scale 1€ theories predict that the distribution shows the stationary
shown in Fig. 5 forr=0.9, 0.95, and 0.98 fon=0.25. In  form after the short initial transient. The stationary form
this time scale, the plateau is hardly seen and absolute valug€§ould last till the Boltzmann's equation becomes invalid
of all the coefficient show gradual decrease towards zero tilflue to correlations developed in the system. The fact that the
the time when the clustering instability sets in; after that timedistribution function starts to deviate from the stationary
the distribution deviates from the Gaussian drastically as ha9'm at a quite early stage suggests that the correlation due to

been reported10]. inelasticity becomes important much earlier than it is gener-
The Sonine coefficiena,(r) for variousr is plotted in  ally expected12]. , , ,
Fig. 6 where the time is scaled by the clustering timfe The correlation that is responsible for the behavior of the

velocity distribution is the velocity correlation. This can be
seen by examining the behavior of the system where the
particle velocity is artificially randomized by the operation
that the velocity of each particle is shuffled by exchanging
them between pairs chosen randomly. By doing this, | de-
Gy stroy the spatial correlation of velocity while preserving the
velocity distribution. The dashed line in Fig. 1 shows the
0 2 40 6 8 100 energy decay with the velocity shuffling, and it indicates that
the clustering is prevented by the velocity shuffle. From Fig.
7, we can see clearly that this system shows the stationary
form of the velocity distribution whose Sonine coefficients
are close to those predicted by the theories.

Some comparison with previous calculations is in order.
Figures 3 and 4 correspond to Figs. 8 and 10 in [REd],
where the agreement with the theory looks much better than
the present ones. The difference for these two sets of figures
is in the particle densityn=0.25 (¢=0.196) in the present
work, but n=0.0637 =0.05) in Ref.[10]. The density
dependence is examined in Fig. 7. It can be actually seen that
the correspondence between the plotrier0.0625 in Fig. 7
and that in Fig. 8 of Ref[10] is quite good. The initial
transient does not show the density dependence, but the
gradual return to the Gaussian after it becomes slower for the

FIG. 5. The Sonine coefficients, (2=¢=5) forr=0.9 (top),  dilute systems. Since the clustering time also becomes larger
0.95 (middle), and 0.98(bottom as functions ofr for n=0.25 (¢ for the dilute system, it is not obvious how the system be-
=0.196). The data represent averages over 100 realizations. ~ havior converges to the uncorrelated one inthe0 limit.

Sonine Coefficients
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o T between this and that investigated in the present work is the
L7 =09 = aoiin R stage that they occur; the present one starts far before the
=== n=025(shuffled) = clustering, thus it is not obvious if the picture based on the
e Burgers equation is applicable to our case.

The kinetic theories have succeeded in explaining many
aspects of granular gas, but the Boltzmann-Enskog equation,
on which most of the theories are based, ignores the particle
correlations except for the pair correlation factor of the po-
sition. This approximation is quite good in the equilibrium

O e e & w0 o system thanks to the absence of the velocity correlation. In
T the inelastic systems, however, the system develops the ve-
locity correlation, and the assumption of molecular chaos

FIG. 7. The Sonine coefficiert, for r=0.9 as a function of-  fails even at very early stage, where the system is generally
for the ordinary dynamicssolid line) and the velocity shuffled dy- regarded to be still in the homogeneous cooling steEsS).
namics (dashed ling for n=0.25 (¢=0.196). a, for n=0.1111  This invalidates the prediction based on the Boltzmann’s
(¢=0.0872) andh=0.0625 (»=0.049) where original dynamics equation that the functional form of the velocity distribution
are also plotted by the dash-dotted line and the dotted line, respeof the inelastic system in HCS becomes stationary.
tively. The data represent averages over 100 realizations. In summary, using large scale MD simulations, | have
demonstrated that in the inelastic system the velocity distri-
al?ution does not stay in a stationary form, contrary to the
expectation by the kinetic theories based on the Boltzmann’s
viation is clear for all the density and they are all apparentlyequat'on' This is due to the velocity correlation developed

through the inelastic collisions, and this effect manifests it-

different from the case with the velocity shuffling3]. . : R
In one-dimensional systems, it has )t/)een reggrt]ed that thseelf in the velocity distribution from the very early stage

distribution recovers the Gaussian form in the late stage oﬁvggle ﬁg%lénstabllmes caused by the inelasticity are still
the clustering state after the velocity distribution shows a two y '
peak structurd14,15. This behavior has been analyzed in  The author is grateful to N. Mitarai, U.M.B. Marconi, A.

terms of the Burgers equati¢t4]. The difference, however, Puglisi, and T. Pschel for stimulating discussions.

a

—0.02

Looking at the data we have at the moment, the gener
behavior thafa,| decreases toward zero after the initial de-
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