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Velocity distribution of inelastic granular gas in a homogeneous cooling state
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The velocity distribution of inelastic granular gas is examined numerically on a two-dimensional hard disk
system in nearly elastic regime using molecular dynamical simulations. The system is prepared initially in the
equilibrium state with the Maxwell-Boltzmann distribution, then after several inelastic collisions per particle,
the system falls in the state that the Boltzmann’s equation predicts with the stationary form of velocity
distribution. It turns out, however, that due to the velocity correlation the form of the distribution function does
not stay time independent, but gradually returns to the Maxwellian immediately after the initial transient till the
clustering instability sets in. It shows that, even in the homogeneous cooling state~Haff state!, where the
energy decays exponentially as a function of collision number, the velocity correlation in the inelastic system
invalidates the assumption of molecular chaos and the prediction of the Boltzmann’s equation fails.
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Free cooling of granular gas under no gravity has b
attracting much interest as a subject of statistical mechan
since people realized that the inelastic collisions betw
particles makes the system behave very different from
elastic system—the subject of the conventional statist
mechanics.

Besides the cooling, or loosing its kinetic energy due
the inelasticity, it has been well recognized by now that,
long as the system is large enough, the system shows s
of instabilities, however, small the inelasticity may be. If t
system is prepared in a highly agitated state, initially it co
down uniformly as

T5
T0

~11t/t0!2 , ~1!

which is called as the Haff state@1#. After a while, the vortex
structure develops in the velocity field~the shearing instabil-
ity! @2#, then the uniformity of the particle density is broke
~the clustering instability! @3#.

After the clustering instability, the clusters of particle
collide with each other, merge, and split in a complex w
@4#; the system eventually develops the high density reg
where the inelastic collapse@5,6# is likely to happen if one
consider the ideal hard sphere system with a constant r
tution coefficient.

Regarding the velocity distribution, the Maxwel
Boltzmann distribution is an equilibrium velocity distribu
tion for the elastic system, and the relaxation to the distri
tion is known to be very fast, i.e., within a several collisio
per particles when the system is spatially uniform. In t
case of the inelastic system, obviously any velocity distrib
tion cannot be stationary because the system loses kin
energy at every collision, but it is plausible that the form
distribution stays stationary, after a short transient if the
locity is scaled by the average speedv0(t):

f ~v,t !5
1

v0~ t !df̂ S v
v0~ t ! D . ~2!
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In fact, kinetic theories based on the Boltzmann’s equat
predicts that there is a stationary scaled solution for the
locity distribution that is different from the Gaussian@7,8#,
and after a several collisions per particle, the velocity dis
bution for the inelastic system falls into it@9,10#.

In this report, I present results of large scale tw
dimensional molecular dynamics~MD! simulations and
shows that the form of the velocity distribution does not s
stationary in the inelastic gas, but after a short initial tra
sient the distribution gradually getting back to the Gauss
till the clustering instability sets in. This gradual chan
starts at very early stage where the inhomogeneity in
system is hardly visible.

The system we examine is the two-dimensional system
hard disks that undergoes inelastic collisions with a cons
normal restitutionr. The rotational motion is ignored. Ifv i

andv i8 denote the velocity of thei th disk before and after the
collision with thej th particle, respectively, then the collisio
rule is given by

v i85v i2
11r

2
@n•~v i2v j !#n,

v j85v j1
11r

2
@n•~v i2v j !#n,

wheren is the unit vector parallel to the relative position
the colliding particles at the time of contact.

The average speedv0(t) for d-dimensional system, de
fined by

d

2
v0~ t !25E dv f ~v,t !v2, ~3!

decreases as the system looses energy; with this spee
scale the velocity distribution through Eq.~2!. In order to see
the time dependence of the scaled velocity distributionf̂ , it
is convenient to expand it using the Sonine polynomial a
©2003 The American Physical Society01-1



n

t

on

o

n
c
m
ug
-
ti
r

oc

n
ch

e
s

s

the
om

. 2
ry

dly

is

es
cted

em
th

n
.

-

RAPID COMMUNICATIONS

HIIZU NAKANISHI PHYSICAL REVIEW E 67, 010301~R! ~2003!
f̂ ~c,t !5
1

Apd
e2c2

(
,50

`

a,~ t !S,~c2!, ~4!

when the distribution is not very different from the Gaussia
the,th order Sonine polynomial is the,th order polynomial
orthogonalized with thed-dimensional Gaussian weigh
function:

S0~x!51, S1~x!52x1
1

2
d,

S2~x!5
1

2
x22

1

2
~d12!x1

1

8
d~d12!, etc.

Due to the normalization and scaling off̂ , we havea051
anda150, thus any deviation from the Gaussian distributi
is seen in the nonzero values ofa, for ,>2.

Simulations were performed by the event-driven meth
using the fast algorithm developed by Isobe@11#. Most of the
simulations were done with the particle numberN
5250 000, and the number densityn50.25; we have taken
the disk diameter as the length unit, then the area fractiof
is given by f[pn/450.196. I employed the periodi
boundary condition and the initial state in the equilibriu
state that is prepared by running the system for long eno
with the restitution constantr 51. I focus on the nearly elas
tic regime where the system stays uniform for a substan
length of time and the distribution does not deviate ve
much from the Gaussian before the clustering instability
curs.

In the following, the time is measured by the collisio
time t, which is defined as the number of collisions ea
particle experiences, i.e.,t[2Ncoll /N with Ncoll being the
total number of collisions~the factor of 2 comes from the
fact that the collisions are binary!.

Figure 1 shows the energy decay as a function of timt
for r 50.9 andn50.25 in the semilogarithmic scale. In term
of t, the decay in the Haff state given by Eq.~1! is expressed
as

FIG. 1. Energy decay as a function oft for r 50.9 and n
50.25 (f50.196). The solid line denotes the result for the syst
with the ordinary inelastic dynamics and the dashed line for
system with the velocity shuffle~see the text!. The exponential de-
cay ~5! with 2g50.093 is also plotted by the thin solid line with a
extra factor to avoid complete overlapping with the dashed line
01030
;
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E~t!5E~0!exp@22gt#, ~5!

where 2g is a decay rate. The thin solid line in Fig. 1 show
the exponential function with 2g50.093~the line is shifted
vertically to avoid complete overlapping!. The initial t de-
pendence fits to the exponential decay very well with
decay rate very close to that obtained in the case of rand
collision: 2g0[(12r 2)/d50.095 for r 50.9. It eventually
deviates from the exponential aroundt;70, when the clus-
tering instability sets in.

The speed distribution for this system is plotted in Fig
for t540 and 80. For both cases, the distribution is ve
close to the Gaussian and the deviation from it is har
seen.

The deviation, however, is clearly seen ina2(t) plotted in
Fig. 3, where the initial deviation from the Gaussian
shown for various values of restitution constantr. From this
figure, it might seem that the scaled distribution becom
stationary after a several collisions per particle as is expe
from the kinetic theories@9,10#. These ‘‘stationary’’ values of

e

FIG. 2. The scaled speed distributions fort540 and 80 with
r 50.9 andn50.25 (f50.196). The plot fort580 is shifted by
the factor of 1021. The Maxwell-Boltzmann distributions are indi
cated by the solid lines for comparison.

FIG. 3. The initial time dependence ofa2 for r 50.99 ~top!,
0.98, 0.95, and 0.90~bottom! with n50.25 (f50.196). The data
represent averages over 250 realizations.
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a2 agree very well with the results of the kinetic theory f
the nearly elastic regionr *0.95 in the case ofn50.25
~Fig. 4!.

This form of distribution, however, is not really stationa
as it may look in the initial stage data of Fig. 3. Thet
dependence of Sonine coefficients over longer time sca
shown in Fig. 5 forr 50.9, 0.95, and 0.98 forn50.25. In
this time scale, the plateau is hardly seen and absolute va
of all the coefficient show gradual decrease towards zero
the time when the clustering instability sets in; after that ti
the distribution deviates from the Gaussian drastically as
been reported@10#.

The Sonine coefficienta2(t) for various r is plotted in
Fig. 6 where the time is scaled by the clustering timet*

FIG. 4. The minimum values fora2 vs the restitution constantr
for n50.25 (f50.196). The lines show the estimate ofa2 by the
Boltzmann’s equation in the lowest approximation by Ref.@8# ~the
dashed line! and in the sixth order approximation by Ref.@10# ~the
solid line!. ~The latter is read off numerically from the origina
paper.! The cross atr 50.9 indicates the stationary value ofa2 for
the velocity shuffling dynamics~see text!.

FIG. 5. The Sonine coefficientsa, (2>,>5) for r 50.9 ~top!,
0.95 ~middle!, and 0.98~bottom! as functions oft for n50.25 (f
50.196). The data represent averages over 100 realizations.
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when the clustering instability sets in anda2 is scaled by its
maximum absolute valueua2* u for each r. The closer the
value of r is to 1, the smaller the slope in thet dependence
becomes, but for all cases, the gradual return to the Gaus
starts almost immediately after the initial transient peri
finishes. It starts actually far before any instability becom
evident.

This behavior obviously contradicts to the results of t
kinetic theories based on the Boltzmann’s equation@9,10#;
the theories predict that the distribution shows the station
form after the short initial transient. The stationary for
should last till the Boltzmann’s equation becomes inva
due to correlations developed in the system. The fact that
distribution function starts to deviate from the stationa
form at a quite early stage suggests that the correlation du
inelasticity becomes important much earlier than it is gen
ally expected@12#.

The correlation that is responsible for the behavior of
velocity distribution is the velocity correlation. This can b
seen by examining the behavior of the system where
particle velocity is artificially randomized by the operatio
that the velocity of each particle is shuffled by exchang
them between pairs chosen randomly. By doing this, I
stroy the spatial correlation of velocity while preserving t
velocity distribution. The dashed line in Fig. 1 shows t
energy decay with the velocity shuffling, and it indicates th
the clustering is prevented by the velocity shuffle. From F
7, we can see clearly that this system shows the station
form of the velocity distribution whose Sonine coefficien
are close to those predicted by the theories.

Some comparison with previous calculations is in ord
Figures 3 and 4 correspond to Figs. 8 and 10 in Ref.@10#,
where the agreement with the theory looks much better t
the present ones. The difference for these two sets of fig
is in the particle density;n50.25 (f50.196) in the presen
work, but n50.0637 (f50.05) in Ref. @10#. The density
dependence is examined in Fig. 7. It can be actually seen
the correspondence between the plot forn50.0625 in Fig. 7
and that in Fig. 8 of Ref.@10# is quite good. The initial
transient does not show the density dependence, but
gradual return to the Gaussian after it becomes slower for
dilute systems. Since the clustering time also becomes la
for the dilute system, it is not obvious how the system b
havior converges to the uncorrelated one in then→0 limit.

FIG. 6. The scaled Sonine coefficienta2 /ua2* u vs the scaled time
t/t* for r 50.90, 0.95, 0.98, and 0.99 withn50.25 (f50.196).
The data represent averages over 100 realizations.
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Looking at the data we have at the moment, the gen
behavior thatua2u decreases toward zero after the initial d
viation is clear for all the density and they are all apparen
different from the case with the velocity shuffling@13#.

In one-dimensional systems, it has been reported that
distribution recovers the Gaussian form in the late stage
the clustering state after the velocity distribution shows a t
peak structure@14,15#. This behavior has been analyzed
terms of the Burgers equation@14#. The difference, however

FIG. 7. The Sonine coefficienta2 for r 50.9 as a function oft
for the ordinary dynamics~solid line! and the velocity shuffled dy-
namics ~dashed line! for n50.25 (f50.196). a2 for n50.1111
(f50.0872) andn50.0625 (f50.049) where original dynamics
are also plotted by the dash-dotted line and the dotted line, res
tively. The data represent averages over 100 realizations.
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between this and that investigated in the present work is
stage that they occur; the present one starts far before
clustering, thus it is not obvious if the picture based on
Burgers equation is applicable to our case.

The kinetic theories have succeeded in explaining m
aspects of granular gas, but the Boltzmann-Enskog equa
on which most of the theories are based, ignores the par
correlations except for the pair correlation factor of the p
sition. This approximation is quite good in the equilibriu
system thanks to the absence of the velocity correlation
the inelastic systems, however, the system develops the
locity correlation, and the assumption of molecular cha
fails even at very early stage, where the system is gener
regarded to be still in the homogeneous cooling state~HCS!.
This invalidates the prediction based on the Boltzman
equation that the functional form of the velocity distributio
of the inelastic system in HCS becomes stationary.

In summary, using large scale MD simulations, I ha
demonstrated that in the inelastic system the velocity dis
bution does not stay in a stationary form, contrary to t
expectation by the kinetic theories based on the Boltzman
equation. This is due to the velocity correlation develop
through the inelastic collisions, and this effect manifests
self in the velocity distribution from the very early stag
where any instabilities caused by the inelasticity are s
hardly visible.

The author is grateful to N. Mitarai, U.M.B. Marconi, A
Puglisi, and T. Po¨schel for stimulating discussions.
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